Элементы теории множеств. Дискретная математика


Тема урока:
«Элементы теории множеств.
Дискретная математика»
Краткая аннотация:
На данном уроке учащиеся расширили свои знания по математике, познакомившись с ещё одним способом решения логических задач, который был им не знаком. Способ решения задач с использованием «кругов Эйлера» упрощает путь к решению задачи, делая его наглядным.
В процессе изучения данной темы, учащиеся научились грамотно оперировать такими понятиями как «множество», «объединение множеств», «пересечение множеств» и использовать их при решении задач. Подбор задач, используемых на уроке, позволяет увидеть безграничное использование «кругов Эйлера».
Одна из целей урока - воспитание интереса к изучаемому предмету, навыков внимания, аккуратности. Формировать навыки самостоятельной работы с ПК, умение выделять главное, сравнивать, анализировать.
Тема урока: «Элементы теории множеств. Дискретная
математика»
Автор: Макаркова Ирина Викторовна
учитель математики МОУ Лицей «Ступени»
Предмет: математика
Класс: 8-10
Цель урока: Формирование общих способов интеллектуальной деятельности,
овладение математическими знаниями и умениями для
продолжения обучения в старшей школе, изучения смежных
дисциплин
Задачи: - познакомить учащихся с новым видом диаграмм – кругами Эйлера
- расширить арсенал средств учащихся для решения логических
задач
- показать использование междисциплинарных связей («Дискретная математика»), применение различных форм контроля знаний,
индивидуальная работа
Тип урока: комбинированный
Используемые УМК , учебные пособия, методическая литература:
Алгебра. 8 класс: учеб. для учащихся общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, И.Е. Феоктистов. – М.: Мнемозина, 2010.
Логические основы математики. 10-11 кл. : учеб. пособие /
А.Д. Гетманова. – М.: Дрофа
3. Куратовский К., Мостовский А. Теория множеств. – М.: Мир, 1970.
4. Лавров И.А., Максимова Л.Л. Задачи по теории множеств,
математической логике и теории алгоритмов. - М.: Наука, 1975.
Программное обеспечение: операционная система, Notebook, интерактивная
доска SMART, раздаточный материал
 
Используемые ЦОР:
Некоторые способы решения логических задач / Презентация ppt.
Круги Эйлера – Венна / Презентация ppt.
Круги Эйлера/ Презентация ppt.
Элементы теории множеств/ Презентация ppt.
Множества, операции над ними/ Презентация ppt.
Разработка урока:
№ Деятельность учителя Деятельность учащегося Демонстрация
на доске
1 - приветствует учащихся
- просит вспомнить тему прошлого занятия
- предлагает ответить на вопросы теста по проверке понятийного материала на Notebook - приветствуют
учителя
- называют тему прошлого занятия:
« Множества. Элементы множества»
- отвечают на вопросы предложенного теста
Показывает на ИД рабочий стол одного из учащихся, дает ключ к тесту, - самостоятельно, используя ключ, проверяют свою работу, комментируют ответы Тест «Множества»
А – множество целых чисел, В- множество целых положительных чисел. Что является пересечением множеств А и В?
Z
N
Q
R
А – множество целых чисел, В- множество целых положительных чисел. Что является объединением множеств А и В?
Z
N
Q
R
А- множество чисел, кратных 2, В – множество чисел, кратных 3.
Что является пересечением множеств А и В?
Все двузначные числа
Числа, оканчивающиеся на 6
Числа, которые делятся на 6
Четные числа
В классе 29 учащихся. Каждый из них изучает хотя бы один язык – английский или немецкий. Английский язык изучают 18 человек, немецкий язык изучают 15 человек. Сколько человек изучают два языка и немецкий, и английский?
4
15
18
11
Как называется множество, в котором нет ни одного элемента?
Такого множества не существует
Простое
Равное
Пустое
А- множество четырехугольников, В – множество параллелограммов,
С – множество квадратов. Какое множество является подмножеством двух других?
А
В
С
Пустое множество
В одном множестве 40 элементов, в другом – 30. Сколько элементов может быть в их пересечении?
40
30
10
70
Найдите объединение множеств цифр , используемых в записи чисел:
122568 и 325186
1,1,2,2,2,3,5,5,6,6,8,8
3
1,2,5,6,8
1,2,3,5,6,8
 
№ Деятельность учителя Деятельность учащегося Демонстрация
на доске
2 Постановка цели:
Один из величайших математиков петербургской академии Леонард Эйлер (1707–1783) за свою долгую жизнь написал более 850 научных работ. В одной из них появились круги, которые “очень подходят для того, чтобы облегчить наши размышления”. Эти круги и назвали кругами Эйлера. С помощью этих кругов удобно геометрически иллюстрировать операции над множествами. Можно рисовать не только круги, но и овалы, прямоугольники и другие геометрические фигуры. -1450738637
3 Вам предлагается задача. Попробуйте изобразить условие задачи с помощью кругов Эйлера Выходит к доске и выполняет задание
4 В Notebook предлагается три задачи. Выполняем по рядам. Потом проверяем. Каждый ряд решает в Notebook самостоятельно задачу Выводит на экран рабочий стол одного из учащегося каждого ряда Комментируют решение задач
№ Деятельность учителя Деятельность учащегося Демонстрация
на доске
5 Давайте посмотрим, в каких еще видах задач можно использовать круги Эйлера Решают задачи у ИД, предложенные учителем



6 Практическая работа
Изобразить на листке А4 отношения предложенных вам понятий с помощью заранее приготовленными кругами Выполняют практическую работу, прикрепляя готовую модель отношений понятий к доске на магниты
7 Итог занятия:
- Что нового вы сегодня узнали?
- Чему научились?
- Необходимо ли это знать и уметь? Для чего? Дети отвечают на вопросы

Приложенные файлы


Добавить комментарий