Зачеты в 9 классе

ЗАЧЕТЫ для 9-го класса

Зачет №1 в форме деловой игры в ПСС по теме « Квадратичная функция»
Тестирование, алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.
СТОЛ А
1. Какая линия является графиком функции у=- (х - 3)2 + 2?
А. Прямая, проходящая через начало координат.
Б. Прямая, не проходящая через начало координат.
В. Парабола.
Г. Гипербола.
2. График функции у = 2(х + 2)2 получается из графика функции у = 2х2 сдвигом на две единицы масштаба: А. Вправо. Б. Влево. В. Вверх. Г. Вниз.
3. Дана функция у = f(х), где f(х) = 3х2 + 11 х -14. Какое из ниже указанных
значений является положительным числом?
А. f(-1). Б. f(-2). В. f(2). Г. f(0).
4. Найдите наименьшее значение функции у = 3(х - 2)2 на отрезке [-2, 5]. А. 0. Б. -12. В. 12. Г. 27.
Задача 5. Найдите наибольшее значение функции у = 0,5(х + 1 )2 на отрезке [0,2].
А. 0. Б. 4. В. 9. Г. 4,5.

СТОЛ В
1. Какая линия является графиком функции у = (х + 2)2 - 4?
А. Прямая, проходящая через начало координат.
Б. Прямая, не проходящая через начало координат.
В. Парабола.
Г. Гипербола.
2. График функции у = Зх2 - 2 получается из графика функции у = Зх2 сдвигом на две единицы масштаба:
А. Вправо. Б. Влево. В. Вверх. Г. Вниз.
3. Дана функция у = f(х), где f(х) = 3х2 + 11х -14. Какое из нижеуказанных значений является отрицательным числом?
А. f(1). Б. f(-2). В. f(2). Г. f(5).
4. Найдите наименьшее значение функции у = 3(х + 2)2 на отрезке
[-2,1].
А. 0. Б.-12. В.12. Г. 27.
Задача 5. Найдите наибольшее значение функции у = -0,5(х -1)2 на отрезке
[0, 2].
А. 0. Б. 2. В. 0,5. Г. -0,5.

СТОЛ С
1. Какая линия является графиком функции у = -(х - 4)2 + 1?
А. Прямая, проходящая через начало координат.
Б. Прямая, не проходящая через начало координат.
В. Парабола.
Г. Гипербола.
2. График функции у = 3(х - 7)2 получается из графика функции сдвигом на семь единиц масштаба:
А. Вправо. Б. Влево. В. Вверх. Г. Вниз.
3. Дана функция у = f(х), где f(х) = 2х2 - 5х - 8. Какое из нижеуказанных значений является положительным числом?
А. f(0). Б. f(1). В. f(-1). Г. f(-2).
4. Найдите наименьшее значение функции у = 2(х - З)2 на отрезке
[2, 1].
А. 50. Б. 8. В. 0. Г.-50. |
Задача 5. Найдите наибольшее значение функции у = 1,5(х + I)2 на отрезке [0, 2]. |
А. 13,5. Б. 9. В. 0. Г. 4,5.

СТОЛ Д
1. Какая линия является графиком функции у = (х + 1)2 - 8?
А. Прямая, проходящая через начало координат.
Б. Прямая, не проходящая через начало координат.
В. Парабола.
Г. Гипербола.
2. График функции у = 5х2 + 7 получается из графика функции у = 5х2 сдвигом на семь единиц масштаба: А. Вправо. Б. Влево. В. Вверх. Г. Вниз.
3. Дана функция у = f(х), где f(х) = Зх2 + 5х - 9. Какое из нижеуказанных значений является отрицательным числом?
А. f(0). Б. f(-4). В. f(-3). Г. f(-5).
4. Найдите наименьшее значение функции у = 2(х + 3)2 на отрезке [-4, 1]. А.-2. Б. 2. В. 32. Г. 0.
Задача 5. Найдите наибольшее значение функции у = - 1,5(х - 1)2 на отрезке [0,2].
А.1,5. Б.-1,5. В. 0. Г.2.


Зачет №2 в форме деловой игры в ПСС по теме « Неравенства»
Тестирование, алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.
СТОЛ А
1 . Сколько решений неравенства 3х2 - 5х - 12 >0 содержится среди чисел
-2, 0, 1,3?
А. 1. Б. 2. В. 3. Г. 4.
2. Сколько решений системы неравенств 13 EMBED Equation.3 1415{13 EMBED Equation.3 1415<13 EMBED Equation.3 1415,
{3х – 2
·х2
содержится среди чисел -1,1,2,3?
А. 1. Б. 2. В. 3. Г. 4.
3. Решите неравенство х2<9. А. х<3. Б. х<-3. В.-3<х<3. Г. х<-3;х>3.
4. Решите неравенство 13 EMBED Equation.3 1415< 13 EMBED Equation.3 1415.
А. х < 2. Б. х > 2. В. 0 < х < 2. Г. х < 0; х > 2.
Задача 5. Найдите натуральное значение параметра р , при котором множество решений неравенства (1 + х)(р – х)
· 0 содержит 5 целых чисел.
А. 1. Б. 2. В. 3. Г. 4.

СТОЛ В
1 . Сколько решений неравенства 2х2 - 5х +2
·0 содержится среди чисел
-1, 0, 1,2?
А. 1. Б. 2. В. 3. Г. 4.
2. Сколько решений системы неравенств 13 EMBED Equation.3 1415{13 EMBED Equation.3 1415<13 EMBED Equation.3 1415,
{ х2 <3х - 1

содержится среди чисел -1,1,2,3?
А. 1. Б. 2. В. 3. Г. 4.
3. Решите неравенство 16 > х2. А. х<4. Б. х<-4. В.-4<х<4. Г. х<-4;х>4.
4. Решите неравенство 13 EMBED Equation.3 1415
· 13 EMBED Equation.3 1415.
А. х
· 3. Б. х >3. В. 0 < х
· 3. Г. х
· 3.
Задача 5. Найдите натуральное значение параметра р , при котором множество решений неравенства х(х - р)
· 0 содержит 4 целых числа.
А. 1. Б. 2. В. 3. Г. 4.
СТОЛ С
1 . Сколько решений неравенства 2х2 - 7х + 5 <0 содержится среди чисел
-1,1,2,5?
А. 1. Б. 2. В. 3. Г. 4.
2. Сколько решений системы неравенств 13 EMBED Equation.3 1415{13 EMBED Equation.3 1415<13 EMBED Equation.3 1415,
{2х – 3
·х2
содержится среди чисел -1,0,2,3?
А. 1. Б. 2. В. 3. Г. 4.
3. Решите неравенство х2<25. А. х<5. Б. х<-5. В.-5<х<5. Г. х<-5;х>5.
4. Решите неравенство 13 EMBED Equation.3 1415< 13 EMBED Equation.3 1415.
А. х < 7. Б. х > 7. В. 0 < х < 7. Г. х < 0; х >7.
Задача 5. Найдите натуральное значение параметра р , при котором множество решений неравенства (2 + х)(р – х)
· 0 содержит 5 целых чисел.
А. 1. Б. 2. В. 3. Г. 4.
СТОЛ Д
1 . Сколько решений неравенства х2 - 5х + 6 < 0 содержится среди чисел
3,9,1,2?
А. 4. Б. 0. В. 2. Г. 1.
2. Сколько решений системы неравенств 13 EMBED Equation.3 1415{13 EMBED Equation.3 1415<13 EMBED Equation.3 1415,
{х2 > 2х - 1
содержится среди чисел -5,-1,0,1?
А. 1. Б. 2. В. 3. Г. 4.
3. Решите неравенство 49 > х2. А. х<7. Б. х<-7. В.-7<х<7. Г. х<-7;х>7.
4. Решите неравенство 13 EMBED Equation.3 1415
· 13 EMBED Equation.3 1415.
А. х
·5. Б. х > 5. В. 0 < х
· 5. Г. х
· 5.
Задача 5. Найдите натуральное значение параметра р , при котором множество решений неравенства (1 + х)(р – х)
· 0 содержит 4 целых числ.а
А. 1. Б. 2. В. 3. Г. 4.


Зачет №3 в форме деловой игры в ПСС по теме «Системы уравнений»
Тестирование, алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.
СТОЛ А
1. Сколько решений уравнения (х - 3)2 -3у = у2 находится среди пар чисел (5; 1), (0; 2), (5;-1)?
А. 0. Б.1. В. 2. Г. 3.
2. Какая из нижеуказанных пар чисел является решением системы уравнений
ху = 6 и у2 - 4х = 1?
А. (0;2). Б. (2;3). В. (6; 0). Г. (-1;-6).
3. Укажите значение произведения х1 у1, если известно, что (х1 у1) решение системы уравнений
3х + у =- 3 и х-у=5. А.-5. Б. 6. В.-6. Г. 5.
4. Воспользовавшись графическим методом, ответьте на вопрос: сколько решений имеет система уравнений у + 1/х = 0 и х – у = 1 ?
А. 0. Б. 1. В. 2. Г. 3.
Задача 5. При каком значении параметра р система уравнений у + х 2 = р и
х2 + у2 = 16 имеет три решения ?
А. 4. Б.0. В. -4. Г. Не существует такого значения р.

СТОЛ В
1. Сколько решений уравнения (х + 2)2 + у2 = 2у находится среди пар чисел:
(-3; 1), (0; 0), (-2; 2)?
А. 0. Б. 1. В. 2. Г. 3.
2. Какая из нижеуказанных пар чисел является решением системы уравнений
х + у = 5 и 2х - у2 = 7?
А. (-3;2). Б.(1;4). В. (3; 2). Г. (8; -3).
3. Укажите значение суммы х1+ у1 если известно, что (х1 у1) решение системы уравнений 2х + у = 1 и х – у = 2.
А. 1. Б. -3. В. 2. Г. 0.

4. Воспользовавшись графическим методом, ответьте на вопрос, сколько решений имеет система уравнений у = 1/х и х – у = 3 ?
А. 0. Б. 1. В. 2. Г. 3.
Задача 5. ри каком значении параметра р система уравнений у + х 2 = р и х2 + у2 = 16 имеет три решения ?
А. 4. Б.0. В. -4. Г. Не существует такого значения р.

СТОЛ С
1. Сколько решений уравнения (х - 4)2 -4у = у2 находится среди пар чисел:
(4; -4), (0; -2), (6; -1)?
А. 0. Б. 1. В. 2. Г. 3.
2. Какая из нижеуказанных пар чисел является решением системы
уравнений х – у = 2 и 2х – у2 =5 ?
А. (1;3). Б.(-1;1). В.(1;-1). Г. (3; 1).
3. Укажите значение произведения х1 у1, если известно, что (х1 ,у1) решение системы уравнений 2х + у =4 и 3 х-у=6.
А.-5. Б. 6. В.-6. Г. 5.
4. Воспользовавшись графическим методом, ответьте на вопрос: сколько решений имеет система уравнений у + 1/х = 0 и х + у = 2 ?
А.0. Б. 1. В. 2. Г. 3.
Задача 5. ри каком значении параметра р система уравнений у + х 2 = р и
х2 + у2 = 16 имеет три решения ?
А. 4. Б.0. В. -4. Г. Не существует такого значения р.


СТОЛ Д

1. Сколько решений уравнения (х + З)2 + у2= 2у находится среди пар чисел:
(-4; 1), (0; 0), (-3; 3)?
А. 0. Б. 1. В. 2. Г. 3.
2. Какая из нижеуказанных пар чисел является решением системы уравнений ху = 3 и у2 - Зх = 6?
А.(3;1). Б.(2;1). В. (1; 3). Г. (1; 2).
3. Укажите значение суммы х1+ у1, если известно, что (х1, у1) решение системы уравнений 2х + у = 1 и х – у = 2.
А. 1. Б. -3. В. 2. Г. 0.

4. Воспользовавшись графическим методом, ответьте на вопрос, сколько решений имеет система уравнений у = 1/х и 2х – у = 0 ?
А. 0. Б. 1. В. 2. Г. 3.
Задача 5. При каком значении параметра р система уравнений у + х 2 = р и
х2 + у2 = 16 имеет три решения ?
А. 4. Б.0. В. -4. Г. Не существует такого значения р.


Зачет №4 в форме деловой игры в ПСС по теме « Свойства функций»
Тестирование, алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.
СТОЛ А
1. Найдите область определения функции у = 13 EMBED Equation.3 1415.
А. х>2. Б. х<2. В. х
·0,5. Г. х
·2.
2. Исследуйте на ограниченность функцию у = 2х2-Зх-1.
А. Ограничена сверху. В. Ограничена и снизу, и сверху.
Б. Ограничена снизу. Г. Не ограничена ни снизу, ни сверху.
3. Среди заданных функций укажите возрастающие:
1)у = 2х2; 2)у = 5х-1; 3)у=3-х; 4) у =
·х. А. 2) и 4). Б. 1), 2), 4). В. 3). Г. 1) и 2).
4. Среди заданных функций укажите четные:
1) у = 2х2; 2) у =
·х; 3) у = 5х; 4) у =
·х
·.
А. 1) и 3). Б. 1) и 2). В. 3) и 4). Г. 1) и 4).
Задача 5. Найдите область значений функции у =9 - х2 .
А.(-
·, 9). Б.(-
·, 9]. В.[9, +
·). Г. [0,9].
СТОЛ В
1. Найдите область определения функции у = 13 EMBED Equation.3 1415.
А.х>3. Б.х<3. В.х
·3. Г. х<13 EMBED Equation.3 1415.
2. Исследуйте на ограниченность функцию у= - х2 + 3х + 1.
А. Ограничена сверху. В. Ограничена и снизу, и сверху.
Б. Ограничена снизу. Г. Не ограничена ни снизу, ни сверху.
3. Среди заданных функций укажите убывающие:
1)у = -х2; 2)у = 2х-3; 3)у=4-х; 4) у =
·х. А. 1) и 3). Б. 3). В. 3) и 4). Г. 1) и 3).

4. Среди заданных функций укажите нечетные:
1) у = х2; 2) у =
·х; 3)у = 3х; 4) у =
·х
·.
А. 1) и 3). Б. 2) и 3). В. 1), 2) и 4). Г. 3).
Задача 5. Найдите область значений функции у = х2 – 1.
А.(-
·,-1]. Б.(-1,+
·). В.[-1, +
·). Г. [0,1]
СТОЛ С
1. Найдите область определения функции у =13 EMBED Equation.3 1415.
А. х>2. Б. х<2. В. х
·0,5. Г. х
·2.
2. Исследуйте на ограниченность функцию у = -3х2 + 2х +1.
А. Ограничена сверху. В. Ограничена и снизу, и сверху.
Б. Ограничена снизу. Г. Не ограничена ни снизу, ни сверху.
3. Среди заданных функций укажите возрастающие:
1)у = -3х2; 2)у = 3 - х; 3)у==5х - 2; 4) у =
·х. А. 2) и 4). Б. 1), 2), 4). В. 3) и 4). Г. 1) и 4).
4. Среди заданных функций укажите четные: 1) у = Зх2; 2) у = | х | ; 3) у = 7х; 4) ) у =
·х.
А. 1) и 3). Б. 1) и 2). В. 3) и 4). Г. 1) и 4).
Задача 5. Найдите область значений функции у =4 - х2 .
А.(-
·,4]. Б.(-
·, 4). В.[4, +
· ). Г. [0,4].
СТОЛ Д
1. Найдите область определения функции 13 EMBED Equation.3 1415.
А. х>3. Б.х<3. В.х
·3. Г. х<13 EMBED Equation.3 1415
2. Исследуйте на ограниченность функцию у = х2- 4х + 1.
А. Ограничена сверху. В. Ограничена и снизу, и сверху.
Б. Ограничена снизу. Г. Не ограничена ни снизу, ни сверху.
3. Среди заданных функций укажите убывающие:
1)у = 2х2; 2)у = 3х-1; 3)у==6-2х; 4) у =
·х. А. 3). Б. 1) и 3). В. 3)и 4). Г. 1) и 4).
4. Среди заданных функций укажите нечетные:
1) у = 1/х; 2) у = х2; 3) у = 5х; 4) у = | х | .
А. 1) и З). Б. 2) и З). В. 3) и 4). Г. 1) и 4).
Задача 5. Найдите область значений функции у = х2 – 3.
А.(-
·,-3]. Б.(-3, +
·). В.[-3, +
·). Г. [0,3].

Зачет №5 в форме деловой игры в ПСС по теме « Степенные функции»
Тестирование, алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.
СТОЛ А
1. Среди заданных функций укажите четные:
1)у = х5; 2)у = х -10; 3)у =х 6, 4)у=х-7. А. 1) и 4). Б. 2) и З). В. 1) и З). Г. 2) и 4).
2. Среди заданных функций укажите те, которые убывают при х > 0:
1)у = х5; 2)у = х -10; 3) у = х6; 4)у=х -7. А. 1) и 4). Б. 2)иЗ). В. 1) и 3). Г. 2) и 4).

3. Найдите наименьшее значение функции у = -х4 на отрезке [-1,2].
А.-16. Б.-1. В. 0. Г.-8.
4. Сколько среди заданных функций тех, которые ограничены сверху:
1)у = х5; 2)у = х -10; 3)у =- х4; 4) у = х -7.
А. 3. Б. 2. В. 1. Г. 0.
Задача 5. При каком значении параметра а система уравнений
у = х4 + а и х2 + у2 =4 имеет одно решение?
А. Нет таких значений а. Б. 2. В. -2. Г.0.

СТОЛ В
1. Среди заданных функций укажите четные:
1)у = х5; 2)у = х -10; 3)у =х 6, 4)у=х-7. А. 1) и 4). Б. 2) и З). В. 1) и З). Г. 2) и 4).
2. Среди заданных функций укажите те, которые возрастают при х > 0: 1) у = х5; 2) у = х -10; 3) у = х6; 4) у=х -7. А. 1) и 4). Б. 2) и З). В. 1) и 3). Г. 2) и 4).
3. Найдите наибольшее значение функции у = -х3 на отрезке [-2,1]. А. 6. Б. 0. В. 1. Г. 8.
4. Сколько среди заданных функций тех, которые ограничены снизу:
1)у = х5; 2)у = х -10; 3)у = х6; 4) у = х -7.
А. 3. Б. 2. В. 1. Г. 0. Задача 5. При каком значении параметра а система уравнений
у = х6 + а и х2 + у2 =9 имеет три решения?
А. Нет таких значений а. Б. 0. В. 3. Г.-3.

СТОЛ С
1 . Среди заданных функций укажите четные : 1)у = х7; 2)у = х - 8; 3)у = х -5; 4)у = х4. А. 1) и 4). Б. 2) и З). В. 1) и З). Г. 2) и 4).
2. Среди заданных функций укажите те, которые убывают при х < 0: 1)у = х5; 2)у = х -10; 3)у = х6; 4) у = х -7. А. 3) и 4). Б. 2) и 3). В. 1) и 3). Г. 2) и 4).
3. Найдите наименьшее значение функции у = - х4 на отрезке [-2, 1].
А. -1. Б. -16. В. 0. Г. -8.
4. Сколько среди заданных функций тех, которые ограничены сверху:
1) у = х7; 2) у = х -8 ; 3) у = -2х 4 ; 4) у = х2 .
А. 3. Б. 2. В. 1. Г. 0.
Задача 5. При каком значении параметра а система уравнений
у = х4 – а и х2 + у2 =9 имеет одно решение?
А. Нет таких значений а. Б. 0. В. 3. Г.-3.
СТОЛ Д
1. Среди заданных функций укажите нечетные:
1)у = х7; 2)у = х -2; 3)у =х -5, 4)у=х4. А. 1) и 4). Б. 2) и 3). В. 1) и 3). Г. 2) и 4).
2. Среди заданных функций укажите те, которые возрастают при х<0:
1)у = х5; 2)у = х -10; 3)у = х6; 4) у = х -7. А. 1) и 4). Б. 2) и 3). В. 1) и 3). Г. 1) и 2).

3. Найдите наибольшее значение функции у = -х5 на отрезке [-1, 1]. А. 1. Б. 0. В. 5. Г.-1.
4. Сколько среди заданных функций тех, которые ограничены снизу: 1)у = х7; 2)у = х -8; 3)у = -2х4; 4)у = х2? А. 3. Б. 2. В. 1. Г. 0.
Задача 5. Задача 5. При каком значении параметра а система уравнений
у = х6– а и х2 + у2 =4 имеет три решения.
А. Нет таких значений а. Б. 0. В. -2. Г. 2.

Зачет №6 в форме деловой игры в ПСС по теме « Последовательности»
Тестирование, алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.
СТОЛ А
1. Найдите седьмой член последовательности уп = 13 EMBED Equation.3 1415.
А. 13 EMBED Equation.3 1415. В. 13 EMBED Equation.3 1415 В. - 13 EMBED Equation.3 1415 Г. - 13 EMBED Equation.3 1415.
2. Найдите шестой член последовательности, заданной рекурентным способом: у1 = 2, уп = уп-1+4, ( п = 2, 3, 4, ...).
А. 30. Б. 18. В. 22. Г. 26.
3. Подберите формулу п-го члена последовательности 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, .
А. 13 EMBED Equation.3 1415. Б. 13 EMBED Equation.3 1415 . В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.

4. Сколько членов последовательности 4, 8, 12, 16,... меньше числа 93?
А. 24. Б. 21. В. 22. Г. 23.

Задача 5. у1 = 1, у2 = 2, уп =3 уп-2 + 2 уп-1 ( п=3,4,5,). Найдите п, если известно, что уп = 182.
А. Нет такого номера. Б. 6. В. 5. Г. 7.

СТОЛ В
1. Найдите девятый член последовательности уп = 13 EMBED Equation.3 1415.
А. 41. Б.-41. В.5. Г.-5.
2. Найдите пятый член последовательности, заданной рекурентным способом: : у1 = 0,5, уп = 2уп-1, ( п = 2, 3, 4, ...).
А. 4. Б.8. В. 16. Г. 1.
3. Подберите формулу п-го члена последовательности 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, .
А. 13 EMBED Equation.3 1415. Б. 13 EMBED Equation.3 1415 . В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.

4. Сколько членов последовательности 3, 6, 9, 12, ... меньше числа 94 ? А. 33. Б. 32. В.31. Г. 30.
Задача 5. у1 = 2, у2 = 1, уп =2 уп-2 + 3 уп-1 ( п=3,4,5,). Найдите п, если известно, что уп = 83.
А. Нет такого номера. Б. 6. В. 5. Г. 7.

СТОЛ С
1. Найдите шестой член последовательности уп = 13 EMBED Equation.3 1415.
А. 13 EMBED Equation.3 1415. Б. 13 EMBED Equation.3 1415. В. - 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.
2. Найдите седьмой член последовательности, заданной рекурентным способом: : у1 = 1, уп = уп-1+2, ( п = 2, 3, 4, ...).
А. 11. Б. 7. В. 9. Г. 13.
3. Подберите формулу п-го члена последовательности 1, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, .
А. 13 EMBED Equation.3 1415. Б. 13 EMBED Equation.3 1415 . В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.

4. Сколько членов последовательности 5, 11, 17, ... меньше числа 60?
А. 9. Б. 8. В. 10. Г. 11.
Задача 5. у1 = 2, у2 = 1, уп =3 уп-2 + 2 уп-1 ( п=3,4,5,). Найдите п, если известно, что уп = 62.
А. Нет такого номера. Б. 4. В. 3. Г. 5.
СТОЛ Д
1. Найдите восьмой член последовательности уп = 13 EMBED Equation.3 1415.
А. 16. Б. 22. В. 11. Г. -22.
2. Найдите пятый член последовательности, заданной рекурентным
способом: : у1 = 0,25, уп =2 уп-1 ( п = 2, 3, 4, ...).
А. 0,5. Б. 2. В. 4. Г. 8.
3. Подберите формулу п-го члена последовательности 3, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, 13 EMBED Equation.3 1415, .
А. 13 EMBED Equation.3 1415. Б. 13 EMBED Equation.3 1415 . В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.
4. Сколько членов последовательности 6, 13, 20, 27, ... меньше числа 63? А. 8. Б. 9. В.10. Г. 11.
Задача 5. у1 = 1, у2 = 2, уп =2 уп-2 + 3 уп-1 ( п=3,4,5,). Найдите п, если известно, что уп = 100.
А. Нет такого номера. Б. 4. В. 3. Г. 5.

Зачет №7 в форме деловой игры в ПСС по теме « Арифметическая прогрессия»
Тестирование, алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.
СТОЛ А
1. Найдите четвертый член арифметической прогрессии: 13, 9,... А. 0. Б. 6. В.-1. Г. 1.
2. Дана арифметическая прогрессия -3,5; -2,... Найдите номер члена этой прогрессии, равного 59,5.
А. 44. Б. 43. В. 34. Г. Нет такого номера.
3. Найдите сумму первых шестнадцати членов арифметической прогрессии, заданной формулой ап = 6п + 2.
А. 864. Б. 848. В. 792. Г. 716.
4. Сумма второго и третьего членов арифметической прогрессии равна 16, а разность прогрессии равна 4. Найдите первый член прогрессии.
А. 2. Б. 4. В. 5. Г. 6.
Задача 5.
1) Сколько членов арифметической прогрессии 2, 2, ... меньше числа 55?

А. 15. Б. 19. В. 16. Г. 13.
2). Сумма четвертого и пятого членов арифметической прогрессии равна 14. Чему равна сумма первых восьми членов прогрессии? А. 56. Б. 75. В. 52. Г. 112.
СТОЛ В
1. Найдите первый член арифметической прогрессии: а1(а2, 4,8, ...
А. 1. Б. 12. В. -4. Г. -1.
2. Дана арифметическая прогрессия 8,2; 6,6; ... Найдите номер члена этой прогрессии, равного -15,8. А. 16. Б. 14. В. 17. Г. Нет такого номера.
3. Найдите сумму первых четырнадцати членов арифметической прогрессии, заданной формулой ап = 5п-1. А. 511. Б. 497. В. 1022. Г. 1400.
4. Третий член арифметической прогрессии равен 6, а пятый равен 10. Найдите первый член прогрессии.
А. 1. Б. 2. В.-1. Г. 0.
Задача 5.
1) Сколько членов арифметической прогрессии -12, -8, ... меньше
числа 48 ?
А. 15. Б. 18. В. 16. Г. 12.
2) Четвертый член арифметической прогрессии равен 18. Чему равна сумма первых семи членов прогрессии? А. 80. Б. 126. В. 72. Г. 96.
СТОЛ С
1. Найдите пятый член арифметической прогрессии: 15,8, ... А. 1. Б.-13. В.-6. Г. 7.
2. Дана арифметическая прогрессия 4,2; 2,4; ...Найдите номер члена этой прогрессии, равного -4,8.
А. 6. Б. 5. В. 4. Г. Нет такого номера.
3. Найдите сумму первых двенадцати членов арифметической прогрессии, заданной формулой ап = 4п + 1.
А. 648. Б. 560. В. 324. Г. 360.
4. Сумма второго и четвертого членов арифметической прогрессии равна 14, а разность прогрессии равна 4. Найдите первый член прогрессии.
АЛ. Б. 2. В. 2. Г.-1.
Задача 5.
1) Сколько членов арифметической прогрессии -3, 3, ... меньше числа 64?
А. 11. Б. 12. В. 13. Г. 4.
2) Сумма третьего и шестого членов арифметической прогрессии равна 18. Чему равна сумма первых восьми членов прогрессии?
А. 72. Б. 180. В. 36. Г. 144.

СТОЛ Д
1. Найдите первый член арифметической прогрессии: а1, а2,3, 7, ...
А.-1. Б. 4. В. 19. Г.-5.
2. Дана арифметическая прогрессия 9,3; 7, 6;... Найдите номер члена этой прогрессии, равного -0,9.
А. 7. Б. 5. В. 6. Г. Нет такого номера.
3. Найдите сумму первых четырнадцати членов арифметической прогрессии, заданной формулой ап = Зп - 1. А. 311. Б. 301. В. 602. Г. 150,5.
4. Пятый член арифметической прогрессии равен 10, а седьмой равен 12. Найдите первый член прогрессии.
А. 2. Б. 4. В. 6. Г. 0.
Задача 5.
1) Сколько членов арифметической прогрессии -15,12, ...меньше числа 34? А. 16. Б. 15. В. 4. Г. 17.
2) Шестой член арифметической прогрессии равен 11. Чему равна сумма первых одиннадцати членов прогрессии? А. 121. Б. 242. В. 110. Г. 120.

Зачет №8 в форме деловой игры в ПСС по теме « Геометрическая прогрессия»
Тестирование, алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.
СТОЛ А
1. Найдите первый член геометрической прогрессии: в1 , в2, 4, -8, ...
А. 1. Б.-1. В. 28. Г. 0,5.
2. Дана геометрическая прогрессия 1, 1,5 , ... Найдите номер члена этой

прогрессии, равного 13 EMBED Equation.3 1415.
А. 5. Б. 6. В. 7. Г. Нет такого номера.
3. Найдите сумму первых шести членов геометрической прогрессии,
заданной формулой вп = 3 п-2.

А. 13 EMBED Equation.3 1415. Б. 13 EMBED Equation.3 1415 . В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.

4. Третий член геометрической прогрессии равен 2, а шестой равен 54. Найдите первый член прогрессии.

А. 1. Б. 6. В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415

Задача 5.
1) Сколько членов геометрической прогрессии -48, 24, ... больше числа 0,1?
А. 4. Б. 5. В. 6. Г. 8.
2) Сумма первого и третьего членов геометрической прогрессии равна 10, а сумма второго и четвертого ее членов равна -20. Чему равна сумма первых шести членов прогрессии?

СТОЛ В
1. Найдите четвертый член геометрической прогрессии: 8, -4,...
А. 1. Б.-1. В. -28. Г. 0,5.
2. Дана геометрическая прогрессия 8, -4 , ... Найдите номер члена этой

прогрессии, равного 13 EMBED Equation.3 1415.
А. 8. Б. 9. В. 7. Г. Нет такого номера.
Найдите сумму первых десяти членов геометрической прогрессии,
заданной формулой вп = 2 п-3.

А. 511. Б. 1023. В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.

4. Сумма второго и третьего членов геометрической прогрессии равна 6, а знаменатель прогрессии равен 2. Найдите первый член прогрессии.
А. 1. Б. -1. В. 2. Г. 4.
Задача 5.
1) Сколько членов геометрической прогрессии 18, -6, ... больше числа
0,01?
А. 4. Б. 5. В. 6. Г. 8.
2) Разность между вторым и первым членами геометрической прогрессии равна -3, а разность между третьим и вторым ее членами равна -6. Чему равна сумма первых пяти членов прогрессии?
А.-27. Б.-33. В.93. Г.- 93.
СТОЛ С
1. Найдите первый член геометрической прогрессии: в1 , в2, 3, -9, ...
А. -3. Б.-1. В. - 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.

2. Дана геометрическая прогрессия 1, 0,5 , ... Найдите номер члена этой

прогрессии, равного 13 EMBED Equation.3 1415.
А. 5. Б. 4. В. 6. Г. Нет такого номера.
Найдите сумму первых семи членов геометрической прогрессии,
заданной формулой вп = 2 п-2.

А. 32. Б. 63,5. В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.
4. Четвертый член геометрической прогрессии равен 3, а седьмой равен 81. Найдите первый член прогрессии.
А. 1. Б. 3. В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415

Задача 5.
1) Сколько членов геометрической прогрессии -48, 24, ... больше числа 0,5?
А. 1. Б. 2. В. 3. Г. 4.
2) Сумма пятого и третьего членов геометрической прогрессии рав на 90, а сумма второго и четвертого ее членов равна -30. Чему равна сумма первых шести членов прогрессии? А.-182. Б. 182. В. 182,5. Г.-182,5.

СТОЛ Д
1. Найдите пятый член геометрической прогрессии: 10, -5,...
А. -1,25.1. Б.0,625. В. – 0,3125. Г. 2,5.
2. Дана геометрическая прогрессия 10, -5,... Найдите номер члена этой прогрессии, равного 0,1. А. 4. Б. 5. В. 6. Г. Нет такого номера.
3. Найдите сумму первых четырех членов геометрической прогрессии, заданной формулой вп = 3 п-3.

А. 13 EMBED Equation.3 1415. Б. 13 EMBED Equation.3 1415. В. 13 EMBED Equation.3 1415. Г. 13 EMBED Equation.3 1415.

4. Сумма второго и четвертого членов геометрической прогрессии равна 120, а знаменатель прогрессии равен 2. Найдите первый член прогрессии.
А. 1. Б. 12. В. 20. Г. 2.
Задача 5.
1) Сколько членов геометрической прогрессии 18, -6, ... меньше числа -0,01? А. 3. Б. 2. В. 1. Г. 4.
2) Разность между вторым и первым членами геометрической прогрессии равна -1, а разность между вторым и третьим ее членами равна 4. Чему равна сумма первых шести членов прогрессии? А. 31. Б.-31. В.33. Г.-32.

Зачет в форме деловой игры в ПСС по теме « Преобразования тригонометрических выражений»
Алгебра 9 класс
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.

СТОЛ А

Найдите значение выражения: sin (-30° ), cos(-60 °), tg(-45° ).
Упростите выражение: 1 – cos2
·.
Преобразуйте в тригонометрическую функции угла tg ( 1,5
· -
· ) .
cos (
· -
· ) =

5. Упростите выражение: 2 cos2 13 EMBED Equation.3 1415- 1.

СТОЛ В

1.Найдите значение выражения:2 sin
· - 2 cos 1,5
· + 3 tg
·/4 - ctg
·/2 .
2.Упростите выражение: 1 – sin2
·.
3.Преобразуйте в тригонометрическую функции угла ctg (
· +
· ).
4. cos (
· +
· ) =

5. Упростите выражение: 2 cos 2 (13 EMBED Equation.3 1415 + sin 13 EMBED Equation.3 1415cos 13 EMBED Equation.3 1415.
СТОЛ С

1.Запишите основное тригонометрическое тождество :
2.Упростите выражение: cos2
· - 1.
3.Преобразуйте в тригонометрическую функции угла cos ( 2
·-
· ).
4. cos
· + cos
·=

5. Упростите выражение: 13 EMBED Equation.3 1415.

СТОЛ Д

1.Запишите формулу для ctg
·.
2.Упростите выражение: sin
· ctg
·.
3.Преобразуйте в тригонометрическую функции угла tg ( 180°-
· ).
4. sin (
· -
· ) =

Упростите выражение: 13 EMBED Equation.3 1415 : 13 EMBED Equation.3 1415





Зачет в форме деловой игры в ПСС по геометрии в 9 классе по теме: «Повторение курса геометрии».
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.

СТОЛ А
1 вопрос. Треугольник (определение). Сумма углов треугольника.
2 вопрос. Теорема о свойстве внешнего угла треугольника.
3 вопрос. Теорема Пифагора.
4 вопрос. Признаки равенства треугольников.
Задача 5. В равнобедренном треугольнике боковая сторона 17 см, а основание 16 см. Найдите высоту, опущенную на основание.
СТОЛ В
1.Какой треугольник называется равнобедренным?
2.Теорема об углах при основании равнобедренного треугольника.
3.Площадь треугольника.
4.Признаки равенства прямоугольных треугольников.
Задача 5. Найдите площадь равностороннего треугольника со стороной 10 см.
СТОЛ С
1.Средняя линия треугольника (определение).
2.Теорема о средней линии треугольника.
3.Синус, косинус, тангенс острого угла в прямоугольном треугольнике.
4.Сформулируйте признаки подобия треугольников.
Задача 5. У треугольников АВС и А1В1С1
· А =
· А1,
· В =
· В1, АВ = 5 см, ВС = 7 см, А1В1 = 10 см, А1С1 = 8 см. Найдите В1С1.
СТОЛ Д
1. Медиана треугольника (определение).
2.Теорема о свойстве медианы равнобедренного треугольника.
3.Решение прямоугольных треугольников.
4. Теорема синусов, теорема косинусов.
Задача 5. В прямоугольном треугольнике катет равен 10 см, а синус противолежащего ему угла 0,8. Найдите гипотенузу.

Деловая игра-зачет в ПСС по теме «Правильные многоугольники»
9 класс геометрия
Цель: проверить знания учащихся; развивать математическую речь учащихся, самостоятельность; развивать навыки общения друг с другом.

СТОЛ А

1.Какой многоугольник называется правильным?
2.Выразите радиус описанной окружности около правильного треугольника через его сторону.
3. Выразите радиус вписанной окружности в правильный четырехугольник через радиус описанной окружности.
4. Выразите сторону правильного шестиугольника через радиус описанной около него окружности.
5 задание: Сторона правильного многоугольника равна а , а радиус описанной окружности R. Найдите радиус вписанной окружности.

СТОЛ В

Какой многоугольник называется вписанным в окружность?
Выразите радиус описанной окружности около правильного четырехугольника через радиус вписанной окружности.
Выразите радиус вписанной окружности в правильный треугольник через радиус описанной окружности.
Выразите сторону правильного шестиугольника через радиус вписанной в него окружности.
5 задание: Сторона правильного многоугольника равна а, а радиус вписанной окружности r. Найдите радиус описанной окружности.


СТОЛ С

Какой многоугольник называется описанным около правильного многоугольника?
Выразите радиус описанной окружности около правильного шестиугольника через радиус вписанной окружности.
3. Выразите радиус вписанной окружности в правильный треугольник через сторону.
4. Выразите сторону правильного четырехугольника через радиус описанной около него окружности.
5 задание: Выразите сторону в правильного описанного многоугольника через радиус R окружности и сторону а правильного вписанного многоугольника с тем же числом сторон.


СТОЛ Д

1.Чему равна длина дуги окружности, отвечающая центральному углу в n°.
2. Выразите радиус описанной окружности около правильного шестиугольника через его сторону.
3. Выразите радиус вписанной окружности в правильный четырехугольник через его сторону.
4. Выразите сторону правильного треугольника через радиус вписанной окружности.
5 задание: Выразите сторону а правильного вписанного многоугольника через радиус R окружности и сторону в правильного описанного многоугольника с тем же числом сторон.

Root EntryEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation NativeEquation Native

Приложенные файлы

Добавить комментарий